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LElTER TO THE EDITOR 

Mean-field renormalisation group transformations for the 
triangular Ising antiferromagnet 

P A Slotte 
Institutt for teoretisk fysikk, Universitetet i Trondheim, N 7034 Trondheim-NTH, Norway 

Received 26 October 1983 

Abstract. The mean-field renormalisation group of Indekeu et al is applied to the anti- 
ferromagnetic nearest-neighbour king model on the triangular lattice. The resulting phase 
diagram in the temperature-field plane is in good agreement with other calculations, while 
the predicted specific-heat index, a, is negative and thus qualitatively wrong. The study 
indicates that the method may be a useful approach, at least for determining phase diagrams, 
for frustrated systems and systems with competing interactions where conventional mean- 
field theory is dubious. 

Recently a new real-space renormalisation group method for calculating critical proper- 
ties of lattice systems has been proposed (Indekeu et a1 1982). This method, which 
in the following will be called the ‘mean-field renormalisation group’ (MFRG), has been 
applied to a diversity of systems, including classical and quantum spins (Indekeu et a1 
1982), random systems including spin glass (Droz et a1 1982) and geometric phase 
transitions (De’Bell 1983), and seems to improve substantially on mean-field (MF) 
calculations of equal complexity. The motivation for the work reported in this letter 
is to shed light on the applicability of MFRG to systems with competing interactions 
and frustration. This is an open question since MFRG in part is based on a MF line of 
thought and it is well known that MF theory often fails in systems with frustration of 
competing interactions (Burley 1965, Binder and Landau 1980). The MF concept, 
which contains most of the physics in the ferromagnetic case, seems somehow to imply 
a neglect of frustration effects. One might therefore suspect that MFRG, like MF theory, 
is dubious when investigating frustrated systems. MFRG makes, on the other hand, use 
of the MF concept at a different level than does conventional MF-theory. Both MF and 
MFRG consider the behaviour of finite clusters in a mean field (symmetry breaking 
boundary conditions), but while MF theory identifies the order parameter of this field 
with the order parameter of the cluster, MFRG only assumes that the order parameter 
scales in the same way. 

The model considered in this letter is the antiferromagnetic nearest-neighbour king 
model on the triangular lattice. The Hamiltonian is 

where p is the inverse temperature, K > 0, the nearest-neighbour coupling in units of 
temperature, h is an external magnetic field and the sums run over all spins and all 
nearest-neighbour pairs, respectively. Due to symmetry only non-negative h need to 
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be considered. In zero field this model is fully frustrated with an infinitely degenerate 
ground state, while the ground state is threefold degenerate, with two sublattice 
magnetisations +1 and one -1; in non-zero field h < 6 .  The ordered phase can be 
characterised by a two-component order parameter which measures differences 
between the three sublattice magnetisations; we use 

O = ( O ~ ,  02)=(a(ml+m2-2ml) ,a(ml-2m2+m3))  (2) 
where m,, is the nth sublattice magnetisation. The fully frustrated zero-field case is 
exactly solvable (Houtappel 1950) and shows no phase transition at non-zero tem- 
perature. This exact feature is not reproduced by MF-type approaches (Kasteleijn 
1956, Burley 1965, Campbell and Schick 1972). The critical exponents in non-zero 
fields should, following universality and symmetry arguments, be identical to those of 
the exactly solved hard-hexagon model (Baxter 1980) and the three-state Potts model 
(Alexander 1975, den Nijs 1979, Nienhuis et a1 1980a, b, Schick 1981). In particular 
the thermal exponent is yt = 4 giving a specific heat index CY = $?. The critical line in 
the h, K plane is by now quite well known through calculations by diverse methods 
(Metcalf 1973, Schick et al 1977, Kinzel and Schick 1981, D6czi-RCger and Hemmer 
1981). The derivative of the critical line at h, = 6 ( T  = 0) is known exactly (Baxter 
1980): 

(d(l/K,)/dh),=,= -4 ln(11/2+5&/2) (3) 
while the derivative at h, = 0 ( T = 0) from scaling arguments is expected to be infinite 
(Kinzel and Schick 1981). 

To sum up: the present model is a simple well studied system with frustration, 
where MF theory fails to produce a qualitatively correct phase diagram. Application 
of MFRG to this model should therefore give valuable indications about the performance 
of this method in systems with competing interactions and frustration in general. 

MFRG is based upon comparison of the behaviour of clusters of different size in 
the presence of a mean field at the boundary. As already mentioned it is convenient 
in the present case to replace the sublattice magnetisations, m l ,  m2 and m3, by the 
order parameter 0 = (ol, 02)  ( l ) ,  and the mean magnetisation, m = f ( m l  + m2+ m3). 
The corresponding three magnetisation parameters of the surrounding mean field are 
denoted by Q = ( w l ,  w 2 )  and p. Calculation of the order parameters and mean magneti- 
sation to the lowest order in Q, for a cluster of N spins, gives equations of the form 

m = M ( h , p , K ) ,  0 = A( h, p, K)Q. (4) 

Doing the same for a cluster of a smaller size N’ gives similarly 

m’ = M’(h’ ,  p ’ ,  K‘), 0’ = A’( h’, p ’ ,  K‘)Q’. ( 5 )  

One then assumes finite-size scaling (Fisher 1971, Suzuki 1977) which is expected to 
be exact when N, N’ +CO and K and K ‘  are close to K,. 

h’ = h, (6) 
O’(h’, p ‘ ,  K ‘ )  = (N/N’)-P/d”O(h, p, K) ,  (7) 
K‘  = (N/N’) l /d”K - [(N/N’)’Idv - 1]K,, (8) 

t The zero-field model has a phase transition at T = 0, and it should be noted that this belongs to a different 
universality class having a thermal exponent yt = O  (Domany er a1 1978, Alexander and Pincus 1980). 
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where p and v are the order parameter and correlation length critical indices, respec- 
tively, d the dimensionality of the system and K,  the bulk critical coupling (inverse 
critical temperature). Expanding (7) to the lowest order in R and R’, (4) and ( 5 ) ,  
and assuming that R scales in the same way as 0 (7) gives 

A’( h, p ‘ ,  K’)  = A( h, p, K ) .  (9) 

The mean magnetisation, and hence p, has its own size dependence which is not 
governed by finite-size scaling. It is natural to approximate this size dependence by 
the MF ansatz m = p  and m ’ = p ’ .  Equations (4), (5) and (9) thus reduce to the 
following system of equations which, via elimination of p and p ‘ ,  represent an 
approximate renormalisation group transformation, K’ = K ’ ( K ) :  

p = M(h,  p, K ) ,  p ’ = M ’ ( h , p ’ , K ’ ) ,  A ’ ( h , p ’ , K ’ ) = A ( h , p , K ) .  (10) 

Equation (8) shows that the fixed point of this transformation, K* = K’ = K,  can be 
identified as the critical coupling, K,, in the external magnetic field h. 

One may expect the finite-size scaling law (6)-(8) to be approximately valid only 
when the differences in the shape and size of the two clusters in question can be 
eliminated by simply adjusting the length scales in one or both space directions. For 
the present model this, and the requirement that all sublattices should be equivalent 
in the cluster, which was implicitly assumed when deriving (4), limits the choice of 
clusters substantially. For clusters of size N < 20 only three triangular clusters, with 
3, 6 and 15 spins respectively, come into consideration; these are shown in figure 1. 

A A i  3 6 15 

Figure 1. The three clusters used in the calculation. 

For the three-spin cluster the explicit expressions in (4) are easily evaluated, giving 

sinh(3a) +exp(4K) sinh(a) 
cosh(3a)+3 exp(4K) cosh(a)’ 

8K exp(4K) cosh( a )  
cosh(3a) + 3 exp(4K) cosh(a) m =  O =  a, 

(11) 
with 

a = ( h - 4 p ) K ,  

while the corresponding expressions for the 6- and 15-spin clusters are too complicated 
to be reproduced here. Simple MF theory, i.e. putting m = p and 0 = R and solving 
(4), gives a zero-field critical temperature of 2.50, 2.20 and 1.84 for the 3-, 6-  and 
15-spin clusters, respectively, in contrast to the exact value of zero. Applying the 
MFRG to the same clusters (10) leads to the phase diagrams, for the (3,6)  and (6,15) 
approximations, shown in figure 2. Except for a rather pathological low-temperature 
part the (6,15) approximation gives a critical line in reasonable agreement with other 
calculations. 

One would like to know why the method is deficient at low temperatures. An 
indication of this may be given by noting that the function A in (4) is nothing but a 
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Figure 2. Phase diagram in the temperature-magnetic-field plane. The broken line is the 
(3,6) approximation, the full line the (6, 15) approximation, and the points are MC results 
(Metcalf 1973). 

sum over selected correlations in the cluster. For very low temperatures these correla- 
tions are almost unity, and from this trivial value no information on couplings can be 
deduced. With increasing cluster size the temperature range for which the correlations 
are almost trivial decreases slowly (logarithmically). 

The correlation-length index, v, can be found by linearising the transformation 
(10) about the fixed point 

AK’= AAK, (12) 

A = ( N / N ’ ) l ’ d u .  (13) 

and noting that (8) gives 

The thermal exponent, y,, can then be found from the well known relation y , =  l / v  
(Stanley 1971). This procedure will give a different exponent for each value of the 
magnetic field as shown in figure 3. As a consequence of universality one expects a 
unique exponent, and within phenomenological scaling, which is very close in spirit to 
the present method and shares the same weak point, much effort has been put into 
developing methods for calculation of exponents and for singling out the best value 
of the exponent (Kinzel and Schick 1981, Burkhardt and van Leeuwen 1982). These 
methods may be applied in MFRG too, but for the present purpose it suffices to note 
that the exponent has plateau values of yt = 0.7 and yt = 0.86 in the (3 ,6)  and (6 ,15)  
approximation, respectively, while the correct value is yt,exact = 1.2. The calculated 
thermal exponent is thus very poor, and it implies a negative specific heat index, which 
is qualitatively wrongt. The capability of the method to predict exponents is poor in 
the ferromagnetic case too (Indekeu et a1 1982), but one expects the exponents to 
converge towards the exact values for larger clusters. 

The present study indicates that the mean field renormalisation group may be a 
useful approach for systems with competing interactions and frustration, at least as 

t This is a property this method shares with a more conventional real space RG (Schick er a1 1977). 
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h 

Figure 3. Thermal exponent as a function of magnetic field for the (3,6) and (6,15) 
approximations, respectively. The correct value of the exponent is 1.2 in all fields 0 < h 6. 

far as determination of critical temperatures is concerned. The method is unreliable 
for low temperature phase transitions though, and this should call for caution when 
applying it to low temperature problems such as spin glasses (Droz et a1 1982). 
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